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1 Introduction

In the A-calculus, there seems to be a well-established notion of what constitutes a
“meaningless” or “undefined” term. The unsolvable terms are taken to be meaning-
less ([Bar8&4], 2.2.14)*.

A term M is solvable if for its closure M’ it holds that for all terms P there
are terms N; --- N, such that M'N;---N, = P. A term is unsolvable if it is not
solvable. Unsolvable terms can be characterized in various ways:

1. A term is unsolvable if and only if there is a reduction containing infinitely many
head reductions (Wadsworth, cf. [Bar84], 8.3.11).

! Even for the A-calculus the issue seems not be so clear either, as witnessed by [Bar92].
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2. A term M is solvable if and only it has a head normal form, which is a M-
expression of the form Az;.---Az,.zE; - - - By, where  may be any of z; -+ -z,
or any other variable. (Wadsworth, cf. [Bar84], 8.3.14).

3. A term t is unsolvable if and only if for every context C[], C[t] has a normal
form if and only if C[s] has the same normal form for all s? ([Bar84], 14.3.24).

Evidence that unsolvability is a reasonable notion of undefinedness follows from:

1. All unsolvable terms can consistently be equated ([Bar84], 16.1.3).
2. The terms with no head normal form are exactly those which denote L in graph
model Pw of Plotkin and Scott ([Bar84], 19.1.10).

Barendregt defined the concept of B6hm tree with help of unsolvability, which
led to the semantics of Bohm trees for A-calculus ([Bar84], 18.3).

How much remains of this for term rewriting? What is a good concept of “unde-
fined”? Clearly the A-calculus definition of solvability does not carry over. The other
characterizations do, although sometimes a bit modified.

This paper makes an initial attempt to identify certain classes of terms which
are plausible candidates for the role of “undefined” or “meaningless” terms. Given a
class of undefined terms satisfying some minimal axioms, the concept of Béhm tree
arises naturally in the setting of infinitary term rewriting. From these axioms follow
a general genericity lemma for term rewriting, similar to the genericity lemma in
lambda calculus (cf. Proposition 14.3.24 in [Bar84]). As for A-calculus the Bohm trees
provide orthogonal term rewriting systems with denotational semantics, depending
on the chosen set of undefined terms.

2 Infinitary orthogonal term rewriting systems

We will briefly recall infinitary orthogonal term rewriting systems involving both
finite and infinite terms. For details of finitary term rewriting the reader is referred
to [vL90] and [AGM92] and for an account of infinitary term rewriting to [KKSdV93]
or the papers of Kennaway et al. in [SPvE93].

An infinitary term rewriting system (TRS, usually this abbreviation is reserved
for the finitary term rewriting systems only) over a signature X is a pair (T'er>(X), R)
consisting of the set T'er> (%) of finite and infinite terms over the signature X and
a set of rewrite rules R C Ter(X) x T'er™(X). If all function symbols of X occur in
R we will write just R for (Ter*(X), R).

The set Ter™(X) is the metric completion of the set of Ter(X) of finite terms
with the metric: d : Ter(X) x Ter(X) — [0,1]. The distance d(t,s) of two terms ¢
and s is 0, if t and s are equal, and 2%, otherwise, where k € w is the largest natural

? Actually in [Bar84] is proved that: a term ¢ is unsolvable if for every context C[] it holds
that C[t] has a normal form implies C[s] has the same normal form for all s.

The second implication can clearly be reversed (take s = t). The reverse of the first
implication says that if ¢ is solvable, then there is a context C[], a normal form r, and
a term s such that C[t] = r and C[s] # r. But this is surely true - take s to be some
other solvable term and use separability to construct a context C[] such that C[t] and
Cs] have different normal forms.
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number such that all nodes of s and ¢ at depth less than or equal to k are equally
labeled.

Substitutions, conterts and reduction steps generalize trivially to the set of infini-
tary terms Ter>(X).

A rewrite rule [ — r is left-linear if no variable occurs more than once in the
left-hand side I. R is nmon-overlapping if for any two left-hand sides s and ¢, any
position u in ¢, and any substitutions ¢ and 7 : Var — Ter®(X) it holds that if
(t/u)? = s” then either t/u is a variable or ¢ and s are left-hand sides of the same
rewrite rule and u = A (i.e. non-variable parts of different rewrite rules don’t overlap
and non-variable parts of the same rewrite rule overlap only entirely). A (in)finitary
term rewriting system R is orthogonal if its rules are left-linear and non-overlapping.

A transfinite reduction sequence consists of a function f whose domain is an
ordinal @, such that f maps each § < « to a reduction step fz — fa+1. f is Cauchy
continuous if the sequence of terms {f3 | 8 < a} is a continuous function from «
(with the usual topology on ordinals) to Ter®(X) (with the metric topology). For
each 8 < a, let dg be the depth of the redex reduced in the step from fz to fg+1.
The sequence is strongly continuous if for every limit ordinal A < ¢, the sequence
{ds | B < A} tends to infinity. It is Cauchy convergent if it is Cauchy continuous
and converges topologically to a limit, denoted by f.. It is strongly convergent if
in addition the sequence {ds | 8 < a} tends to infinity. As we have argued in
[KKSdV93], strongly convergent reduction sequences are the appropriate notion of
transfinite reduction sequence, as Cauchy convergence alone is insufficient to allow
the definition of the fundamental notions of residuals, compression and (projection
or) strip lemma.

We write t —4 s (resp. t —<q $) to denote a strongly converging reduction of
length « (resp. at most @) starting from « and converging to 8, and t = s for
a strongly converging reduction of any finite or infinite length. ¢ —* s denotes a
reduction of finite length (including zero). Consider some examples:

1. Rule A(z,y) = A(y,z), sequence A(B,C) = A(C,B) =+ A(B,C) = A(C,B)---
2. Rule A(z,y) - A(y,t), sequence A(D,D) — A(D,D) = A(D,D) - A(D,D)---
3. Rule C — S(C), sequence C =+ S(C) — S(S(C)) — ---S(S(S(---)))-

Example (1) is a diverging reduction sequence. Example (2) is Cauchy conver-
gent with limit A(D, D). Example (3) is strongly convergent with limit S¥ (i.e.
S(S(S(-)))-

In order to transfer certain theorems about finitary orthogonal term rewriting to
the infinitary setting we need to extend the definition of descendant to account for
what happens at limit points. For a set of positions v of to and a reduction sequence
a from tg —34 ta, the set v\ a of descendants of v by g —4 ts in 4 is defined by
induction on the ordinal o. When « is finite, this is the standard notion. If a is a
limit ordinal, then v\ « is defined in terms of the sets v\ 3 for all 8 < «, as follows:
y€v\aifand only if 3f<aVy (<y<a—ru€v\7)

Lemmal. Strip Lemma. Let tg —4 ta be a strongly converging reduction of to to ta
and let to — sq be a reduction of a redex R of tg. Then there is a strongly converging
reduction sg =g So comsisting of a concatenation of strongly converging reductions
Sy =3, Sy41 for v < «, where for all v < a, s, is obtained by contraction of all
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descendants of R in t, and sy —p, S44+1 5 a strongly converging reduction of all
descendants of the contracted redez in t, = ty41. a

The notion of Lévy equivalence can be generalised to the infinitary context. The
compression lemma then states that for any strongly converging reduction there
exists a Lévy equivalent strongly converging reduction of length at most w. For the
present paper the following version suffices:

Lemma 2. Simple Compression Lemma. Ift =% s thent —<, s. )

In infinitary term rewriting the transfinite Church-Rosser property (whenever
t; <o t —+p to there exists a term s such that ¢; — s ¢~ t2) holds only for almost
non-collapsing orthogonal TRSs. A TRS is almost non-collapsing if it has at most
one rule whose right hand side is a single variable, in which case the corresponding
left hand side contains no other variables. A counterexample is given by the rules
C — A(B(C)), A(z) = z,B(z) — z. The term C can strongly converge to both A%
and B“.

In the rest of this paper all reductions will be assumed to be potentially infinite,
strongly converging reductions.

3 Axioms for undefined terms

There are two properties which we consider any notion of undefinedness should
satisfy, which we state here as two axioms on the set U of undefined terms.

Firstly, evaluation of an undefined term should not yield a defined term (other-
wise the original term would be considered to be defined). Conversely, evaluation
of a defined term should not yield an undefined term. This assumption depends on
the fact that we are dealing only with orthogonal term rewrite systems. In other
systems, a term might reduce to both an undefined term and to a defined term, and
it is less clear how to classify such a term.

Axiom 1. U and its complement are closed under strongly converging reduction.

Secondly, terms without root stable form should immediately be classified as
undefined.

Definition 3. A term is root stable if it cannot be reduced to a redex. t has a root
stable form if it can be reduced to a root stable term s. s is said to be a root stable
form of t.

Intuitively, if we can reduce a term to a root-stable form, then the information at
the root embodies part of the total information obtainable from the term. If a term
has no root-stable form, then it contains no information, and should be considered
to be undefined. Hence:

Axiom 2. U contains every term which has no root stable form.
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It is convenient to use the symbol L to denote undefinedness. We add this to
the signature as a nullary function symbol. Terms possibly containing L are called
partial terms. L is conventionally defined to be not root-stable. A partial order is
defined on partial terms by requiring that LC ¢ for every term t, and that every
function symbol is monotonic. If s T ¢, then s is said to be a prefiz of t.

The next definition extends to partial terms the classification of terms into de-
fined and undefined.

Definition4. U, ={t € Ter*(ZU{L})|3s € Ut L s}.

For the remaining definitions and theorems, we assume that U satisfies axioms
1 and 2. All terms considered are partial terms.

Lemma5. U is closed under reduction if and only if U, is.

Proof. “If” is trivial. For the reverse direction, let ¢ € U,. Take a variable z not
occurring in ¢ and let t' be obtained from t by replacing every occurrence of L by
z. Then every reduction of ¢t corresponds to a reduction of t'. If ¢t were reduced to a
term outside U, the corresponding reduction of ¢ would lead to a term outside U.

0O

This implies that U satisfles axiom 1 if and only if U, does.

Definition 6. U-reduction (notated —y) is the union of the reduction relation of
the given system with the rule t -y L for all ¢t € U,. A normal form with respect
to this relation is, by analogy with lambda calculus, called a Béhmy tree or Béhmy
normal form.

The following theorems establish some basic properties of B6hmy normal forms,
and flesh out the intuition that undefined terms are not “visible” to any context in
which they are placed. Preliminary to this, we need some properties of prefixes and
root-stable terms.

Lemma7. Lett —* s, and let r be a finite prefiz of s. Then there is a term q, also
having r as a prefiz, such thatt —* q.

Proof. By the Compression Lemma, t —+<* 5. By strong convergence, every term in
this sequence from some point before the limit onwards has r as a prefix. Q

Lemma8. 1. The set of root stable terms is closed under strongly converging re-
ductions.

2. The set of terms having a root stable form is closed under strongly converging
reduction.

Proof. 1. Immediate from the definition.
2. This follows from the first item and theorem 18, a general theorem that we will
prove in the next section. O
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Lemma9. If a term can be reduced to root-stable form, it can be reduced to root-
stable form in finitely many steps.

Proof. Let t be reducible to a root-stable term s. By the Compression Lemma, this
can be done in at most w steps. By strong convergence, the reduction of ¢ to s must
have the form t —* r =% s, where r —* s performs no root reductions. Suppose
that r is not root-stable. Then r can be reduced to a redex, and by lemma 7 can
be reduced to a redex in finitely many steps. Let 7 —* ¢ be such a reduction. Now
apply the Strip Lemma to the sequences r —-* s and 7 —* ¢, to obtain sequences
s =+ p and r = p. Neither of the given sequences contains any root reductions,
therefore neither do the sequences constructed by the Strip Lemma. 7 is a redex, so
by orthogonality, p must also be a redex, contradicting the root-stability of s. O

Theorem 10. Every term has a unique Béhmy tree.

Proof. Define t to be stable to depth n if for every occurrence u of ¢ of length at most
n, t | u is either L or root-stable.

Let t be any term. If £ has no root-stable form, then by the first axiom, t =y L.
By lemma 8, the set of such terms is closed under reduction, so L is the only Béhmy
tree which ¢ can reduce to. Otherwise, t reduces, and by lemma 9 in finitely many
steps, to a root-stable term s. The finite Church-Rosser property (of the ordinary
reduction rules) implies that the root symbol or root variable of s is determined
uniquely. Therefore every term can be U-reduced to a term which is stable to depth
1, and its root symbol, whether 1, a variable, or a function symbol, is unique.

Let t be stable to depth n. For any occurrence u of ¢ of length n, t | u can be
reduced in finitely many steps to a term stable to depth 1. Doing this for all such
occurrences gives a finite reduction of ¢ to a term stable to depth n+ 1. Furthermore,
the prefix of this term down to depth n + 1 is uniquely determined.

Repeating indefinitely gives a strongly convergent U-reduction of ¢ to a unique
term stable to all finite depths, i.e. a Béhmy tree. 0

Definition 11. By(t) denotes the Bdhmy tree of t.

Theorem12. For any term t, and any finite term s T By(t), there is a finite
reduction of t to some term r such that s Cr.

Proof. In the proof of theorem 10 we constructed for each term a strongly converging
reduction to Béhmy normal form of length at most w. By the definition of strong
convergence any finite prefix of the final term is present at some finite stage during
the reduction. 0

Theorem 13. For any term t, t € Uy if and only if By(t) =L1.

Proof. =: immediate from the definition of U-reduction.

<=: From the definition of U-reduction, the final step of a U-reduction of t to L
must have the form s =1, where s € U, . Since by axiom 1 the complement of U is
closed under reduction, t must also be in U . [n]

Theorem 14. If s Ct then By(s) C By(t).
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Proof. By induction on a U-reduction of s to By(s). It is immediate from the def-
inition of U-reduction that ¢ has a U-redex everywhere that s does. Therefore if
s =y s’ by a reduction at occurrence u, then for some #', t — t' by reduction at v,
and s' C t'. By continuity, it follows that there is a term t' such that ¢ = ¢ and
By(s) C t'. Therefore By (s) C By (t') = By(t). 0

Theorem 15. For any terms s and t, By (s) C By (t) if and only if for every context
Cll, Bu(C[s]) C By (C[t]).

Proof. <«=: immediate by taking C[] = [].

=: By uniqueness of B6hmy-normal forms (theorem 10), the right hand side is
equivalent to By (C[By(s)]) C By (C[Bu(t)]). In other words, it is sufficient to prove
the theorem in the case where s and ¢ are B6hm normal forms. When this is the case,

the left hand side is equivalent to s being a prefix of ¢. This implies that C[s] C C[t].
By theorem 14 the right hand side follows. O

Theorem 16. For any term t, t is in Uy if and only if for any contest C[] and
term s, By (C[t]) C Bu(Cls)).

Proof. <=: Take C[] =[] and s =L. Then the right hand side says that By(t) =L.
By theorem 13,t € U, .

=: Let t € U,. By theorem 13, By(t) =L. Therefore By (C[t]) = By(C[L]).
LC s, so by theorem 15, By (C[L]) C By (C[s]). 0

This theorem is a generalization of the genericity lemma occuring in lambda
calculus (cf. Proposition 14.3.24 in [Bar84]).

Definition 17. A term is totally defined if none of its subterms (including the term
itself) is in U, . (Note that such a term necessarily cannot contain _L.)

We note that our axioms are expressed in terminology which applies to the
lambda calculus as well. The set of unsolvable terms of lambda calculus satisfies all

the above axioms and theorems, as do the sets of easy terms and the terms of order
0 [Bar92).

4 Candidates for syntactic definitions of undefinedness

In this section we describe four different notions of undefinedness. For each one,
we state which of the axioms of the previous section it does or does not satisfy.
In addition, with each definition there is associated a set of “certainly-meaningful”
terms; with these we can state stronger versions of some of the axioms.

We can simplify the task of establishing that the various concepts satisfy the
axioms for undefinedness, by the following theorem.

Theorem 18. Let S be a set of terms having the following two properties:

1. S is closed under transfinite reduction.
2. For every term t, if there is an s € S such that t —+°° s, then there isan s’ € S
such that t —* s'.
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Let S be the set of all terms t such that there is an s € S for which t =+ 5. Then
S is closed under transfinite reduction.

Proof. Let t € S. That is t = p for some p € S. Suppose that ¢t = s. We must
show that s € S. From t € S it follows that ¢t = p for some p € S. Hence, by
condition 2, there is an r € S such that ¢ —* r. By the Strip Lemma, there must
exist a ¢ and reduction sequences s = ¢ and r =% g. By condition 1, g € S.
Therefore s € S. 0

4.1 Transparent and opaque terms

Definition 19. A closed term is a transparent value if it has the form o (l|u), where
l is the left-hand side of a rule, u is a position in [ such that [|u is not a variable,
and o is a substitution. An open term is a transparent value if some closed instance
is. A term is transparent if it can be reduced to a transparent value; otherwise, it is
opaque. U, is the set of opaque terms. A totally transparent value is a term, all of
whose subterms are transparent values.

For example in a TRS expressing basic arithmetic one might encounter the rules:
Add(0,y) = y
Add(S(z),y) = S(Add(z,y))

In this fragment the terms 0,5(0) and Add(S(z),y) are examples of transparent
values. Terms like Add(z, True) and S(True) are opaque.

The intuition behind the definition of U, is that for a term to be meaningful, it
must be possible for it to be pattern-matched from outside.

Note that while the sets of opaque and transparent terms are in general not recur-
sive, the sets of transparent values and totally transparent values are. Transparent
values can be thought of as “obviously meaningful” terms. Totally transparent values
consist entirely of obviously meaningful components.

The concept of transparent value can be regarded as a generalisation to arbitrary
orthogonal rewrite systems of the notion of constructor term. A constructor system
is a TRS in which every function symbol is either an operator, i.e. appears at the root
of at least one left-hand side, and does not appear anywhere else in any left-hand
side, or a constructor, i.e. a symbol which does not appear at the root of any left-hand
side. A constructor termis one having a constructor symbol at its root. It is clear that
in a constructor system, every transparent value is a constructor term. In practical
examples of constructor systems, such as programs in most functional languages, one
typically also finds that every term with a sufficiently large prefix consisting entirely
of constructors is a transparent value. In fact, if constructor symbols always arise
in conjunction with operators whose rules discriminate on the constructor, then the
transparent values will be precisely the constructor terms.

Lemma20. The set of transparent values is closed under transfinite reduction.
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Proof. Let t = o(l|u), let [ be the left hand side of some rule, and let u # () be a
position of a function symbol in I. Let t = s. We prove by induction on the length
of the sequence that s is an instance of {|u.

Let ¢ =+ s in one step, by reduction of a redex at position v. By orthogonality,
u - v cannot be a position of a function symbol in [, since otherwise o(l) would have
conflicting redexes at () and at u - v. Therefore u - v is an extension of a position of
a variable z in [, and s is an instance ¢'(l|u), where ¢’ differs from ¢ only at z.

Suppose tg —+4 to, where to = o(l|u) is transparent, o, I, and u being as before.
Assume by induction that each term ¢g for 8 < « is an instance of {|u. Since I|u is
finite, convergence implies that ¢, is also an instance of [|u, and hence is a transparent
value. a

Lemma21. If t can be reduced to a transparent value, it can be reduced to one in
finitely many steps.

Proof. Suppose ¢ can be reduced to an instance of a term {|u, where [ is a left hand
side and u is a nonempty position of a function symbol in [. Since l|u is finite, by
lemma 7, t can be reduced to such a term in finitely many steps. w}

By theorem 18 we obtain from these lemmas:

Corollary 22. The set of transparent terms is closed under transfinite reduction.
0

Theorem 23. In an orthogonal TRS:

1. U, satisfies axioms 1 and 2.
2. Euvery transparent value is root stable.
3. Every totally transparent value is a normal form.

Proof. 1. By orthogonality U, is trivially closed under reduction, and by corollary
22 so is its complement. From orthogonality it is immediate that U, contains all
terms without root stable form.

2. Immediate from orthogonality.
3. Immediate from the previous item. ]

However, note that in general not all normal forms are transparent. An example
is given by a term such as Add( True, True), given a set of rules for Add which require
both arguments to be integers. This term is an opaque normal form.

4.2 w-reduction

w-reduction is based on the notion that in general, one cannot discover the normal
form of a term other than by reducing it to normal form. The information about
the normal form of a term that we can discover without performing any reduction
may be approximated by imagining that every redex is undefined, and that every
term that might possibly be a redex, given that nothing is known about its subterms
which are redexes, is also undefined.
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Definition 24. Let w be a new nullary function symbol. Define a partial ordering
on terms:

1. w<tforallt
2. F(t1,...,ta) S F(t},...,t,) if t; <t: when 1 < i< n.

If s 5 t then s is an w-prefiz of ¢. w-reduction is defined by the rule t - w if t < s
for some redex s.

Proposition 25. w-reduction is confluent and strongly normalising (even if the TRS
is not orthogonal).

Definition 26. w,(t) is the (existing and unique, by the previous proposition) w-
normal form of £. t is an w-value if there is a finite w-prefix s of ¢ such that wns(s) # w.
t is w-defined if it reduces to an w-value, otherwise it is w-undefined. U, is the set
of w-undefined terms. A total w-value is a term, all of whose subterms are w-values.

For finite terms, the above definition of ¢ being an w-value is equivalent to the
w-normal form of ¢ not being w. For infinite terms, this is not the case. For example,
given a rule whose left hand side is F'(A), the infinite term F(F(F(...))) is a normal
form, hence also an w-normal form, but every finite w-prefix w-reduces to w. The
more complicated definition of w-value is necessary to ensure that the w-undefined
terms are closed under reduction.

Lemma 27. The set of w-values is closed under transfinite reduction.

Proof. Let t be a w-value, with w-normal form s. Then for every position u of a
proper function symbol in s, u cannot be a position of a redex in any term which is
an instance of s|u. Therefore s is a prefix of every term which ¢ reduces to, and since
s is a w-normal form, it is a prefix of the w-normal form of every such term. O

Lemma 28. If a term can be reduced to a w-value, it can be reduced to an w-value
in finitely many steps.

Proof. Let t be reducible to a w-value s. That property of s depends only on some
finite prefix s’ of s in w-normal form. By lemma 7, t is reducible to a term having '
as a prefix in finitely many steps. Such a term is a w-value. 0

By theorem 18 we now obtain from these lemmas:

Corollary 29. The set of terms having a w-normal form is closed under strongly
converging reduction. a

Theorem 30. In an orthogonal TRS:

1. U, satisfies azioms I and 2.
2. Every w-value is root stable.
8. The total w-values are the normal forms.
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Proof. 1. The w-undefined terms are closed under reduction because they are a
class of terms not reducible to members of a certain class. By corollary 29, the
complement of U, is closed under strongly converging reduction. It is immediate
that U, contains all terms without root-stable form.

2. Immediate.
3. Immediate from the previous item. m]

4.3 Root stable form

In earlier sections we defined the notion of root stable form. This itself gives rise to
a minimal notion of undefinedness, in which the “meaningless” terms are taken to
be exactly the terms without root stable form.

Let U, be the set of terms without root stable form. By analogy with the notions
of transparent value and w-value, we might call root-stable terms rs-values. The
total rs-values would then be the terms, all of whose subterms are root-stable, i.e.
the normal forms.

Theorem 31. In an orthogonal TRS:

1. U,s satisfies azioms 1 and 2.

2. The following are equivalent for any term t:
(a) t is a normal form.
(b) t is a total rs-value.
(c) Every subterm of ¢ is root stable.

Proof. 1. U, is trivially closed under transfinite reduction. Its complement is closed,
by corollary 8. The second axiom is trivial from the definition.
2. Trivial. ]

4.4 Hypercollapsing terms

A collapsing rule is a rewrite rule whose right hand side is a variable. A collapsing
redez is a redex by such a rule. A hypercollapsing term is a term from which there
is a (strongly continuous) reduction sequence containing infinitely many collapsing
reduction steps at the root.

The notion of hypercollapsing terms as being the undefined terms only satisfies
the first axiom for undefinedness. We include it here because the hypercollapsing
terms play a key role in the failure of the Church-Rosser property for infinitary
rewriting in orthogonal TRSs. In [KKSdV93] we have shown that in general, the
Church-Rosser property holds only up to the equivalence of hypercollapsing terms.

Let Uy, be the class of hypercollapsing terms.

Theorem 32. In an orthogonal TRS:

1. Uy, satisfies aziom 1.
2. A normal form contains no hypercollapsing subterms.
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Proof. 1. In [KKSdV93] we have proved that hc-terms are closed under reduction.
If a term reduces to a hypercollapsing term, then it is clearly a hypercollapsing
term itself. Hence the complement of Uy, is closed under reduction as well.

2. Trivial. O

However,

1. Uy, in general does not satisfy axiom 2. Consider the rule A — A and the term
A. This term has no root-stable form, but is not hypercollapsing.

2. Because of the failure of axiom 2, theorem 10 also fails for Up.-reduction. The
term A in the above example has no Béhmy, _ tree. (However, Béhmy, _ trees,
when they exist, are unique. This can still be proved with help of entirely different
methods from [KKSdV93].)

4.5 Comparison of the above notions

Theorem 33. Up. C U, C U, C U,.
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